
GPU PARALLELIZATION OF A THREE-DIMENSIONAL RIEMANN
SOLVER USING UNSTRUCTURED TETRAHEDRAL GRIDS
Prof. Matthew Smith,
Department of Mechanical Engineering,
National Cheng-Kung University, Taiwan.

BACKGROUND

• Why use parallel computing?

0.2 ms

0.1 ms

0.3 ms

0.5 ms

1.0 ms

2.0 ms

3.0 ms

4.0 ms

0.1 ms

0.2 ms

0.3 ms

0.5 ms

1.0 ms

2.0 ms

3.0 ms

4.0 ms Response 1: Because we have applications which require it….

BACKGROUND

• Why use parallel computing?

Response 2: Because you have to try hard to find a system which is not capable of parallel computing.

Coprocessors
CPU’s

簡報者
簡報註解
Fact: Currently (in Taiwan), it is impossible to purchase a CPU from a regular vendor which is not multi-core.

BACKGROUND

• Why use parallel computing?

Response 3: Because it’s easier than its ever been before. Mostly. Well….

OpenACC CUDA OpenMP / Posix OpenMPI / MPI

簡報者
簡報註解
Fact: Currently (in Taiwan), it is impossible to purchase a CPU from a regular vendor which is not multi-core.

BACKGROUND

• Why use parallel computing?

Response 4: Because it’s more affordable than ever before.

AMD A10-6800K
$4400 NTD

GTX-650 Ti
$4000 NTD

Intel i3
$4900 NTD

HD-7970
$8000 NTD

簡報者
簡報註解
Fact: Currently (in Taiwan), it is impossible to purchase a CPU from a regular vendor which is not multi-core.

BACKGROUND
AMD Athlon II X6

FAKE
MONA
LISA

GTX-TITAN

Seventeam PSU

• There is no longer an
excuse for not having
a parallel capable
computer.

• It’s very possible to
own a computer
capable of 1 TFlop for
less than $800 USD.

GTX-460

簡報者
簡報註解
PS: This computer cost more than 800 USD.

Can anyone here guess which item was the 2nd most expensive?

BACKGROUND

• The pursuit of high performance computing continues in Taiwan.

• Current methodologies (in my lab) have focused on the use of:
• Conventional (distributed) parallel computing

• MPI-based distributed computing,
• Hybrid shared-distributed parallel paradigms,

• The Intel Phi device,
• The Kepler (K20, Titan) and Fermi (M2070, C2075) Tesla Computing GPU’s.

• Today’s talk will focus on the GPU. Mostly.

BACKGROUND
• This research is supported by the presence of two

supercomputing clusters:

• Formosa 5 @ NCHC: < 80 nodes, each with dual Xeon
CPU’s and 3x Tesla (Fermi) M2070. Infiniband interconnect
(40GB)

• A small phi cluster containing several Intel Phi devices
over multiple computing nodes. (Also located @ NCHC)

• This is in addition to multiple test platforms located within
NCKU’s High Performance Heterogeneous Computing
Laboratory (all of Nvidia, AMD, Intel Coprocessors and
Accelerators).

 Formosa 5

GPU ARCHITECTURE

• The modern GPU contains
a large number of
independent streaming
cores, stored separately in
multiple SMX’s (SMP’s).

• Each core is capable of
performing relatively
simple operations – unlike
modern CPU cores.

• Communication is possible
using shared and global
memory – but should be
discouraged.

簡報者
簡報註解
The modern AVX-capable CPU is extremely powerful – capable of performing parallel SIMD operations on 8 floats simultaneously. This, together with massive amounts of cache, mean a single CPU core is not the same as a CUDA core.

VECTOR SPLIT FVM COMPUTATION

• Our previous strategy for obtaining high degrees of performance on the GPU
device was through the use of Vector Split Finite Volume fluxes, where the
flux between cells i and i+1 can be written in the general form:

• We’ve developed several low dissipation versions of such schemes:

𝐹𝐹
𝑖𝑖+12

= 𝐹𝐹𝑖𝑖+ 𝑥𝑥𝑖𝑖 +
∆𝑥𝑥
2 +𝐹𝐹𝑖𝑖+1− 𝑥𝑥𝑖𝑖+1 −

∆𝑥𝑥
2

() () ()∑∫
=

+
∞

++ ≈+=
N

j
jjjjSQDS wvvHdvvfuvF

10
, ''' ηηη Smith et al., JCP, 2008, ParCFD 2009, 2010.

() dcEvcvc
a
cwF

a

v
in

i

N

i
iUEFM ∫∑
−=

+























+






 +

+=
2

1 22
ρρρ Smith et al., CMES 2010, C&F, 2013.








 −
+






 +

=+

2
1

2
1 2

L
LL

L
L aDUDFF χχ

Kuo et al., C&F, 2012, Smith et al. C&F 2013.

For example….

簡報者
簡報註解
CUDA cores – being separate – are well applied using vector split FVM due to the locality.
We’ve developed many split solvers to meet this end.

VECTOR SPLIT FVM COMPUTATION

Čada. M., M. Torrilhon., “Compact third-order limiter functions for finite volume methods,” J. Compt. Phys.,
Vol.228, pp. 4118–4145, 2009.

Koren
Limiter
(3rd order)
1000x1000

MINMOD
Limiter
(2nd order)
960x960

Roe (FDS)
Fluxes

Double
Precision

SHLL (FVS)
Fluxes

Single
Precision

簡報者
簡報註解
My result on the right. Vector Split fluxes are still capable of high resolution simulation. But they are still problematic.
Euler 4 contact problem – supposed to be difficult for a vector split approach to manage due to failure to resolve contact surface.

VECTOR SPLIT FVM COMPUTATION

Čada. M., M. Torrilhon., “Compact third-order limiter functions for finite volume methods,” J. Compt. Phys.,
Vol.228, pp. 4118–4145, 2009.

Koren
Limiter
(3rd order)
1000x1000

MINMOD
Limiter
(2nd order)
960x960

Roe (FDS)
Fluxes

Double
Precision

SHLL (FVS)
Fluxes

Single
Precision

簡報者
簡報註解
Euler 4 shock problem.

GPU IMPLEMENTATIONS

• The development of the MOCVD solver platform
continued from the interactive real-time computation
platform using Augmented Reality.

Demonstrations at SC11, ISC12, GTC’13. Demonstrations at NTHU

簡報者
簡報註解
This makes real-time applications possible.

GPU IMPLEMENTATIONS
• Real-time computation and

visualization on the GPU is simple
using OpenGL.

• This tool allows the engineers to see
the flow field evolve in real-time,
adjust boundary conditions in real-
time or change operating
conditions.

• Hence, the key to the approach is
the focus on the main (OpenGL)
rendering loop.

Initialization

Split Flux
Computations (Cell)

State Update
Computations

Rendering
Operations

GPU Flux Calc

GPU State Calc

GPU (s)
Rend

ering Loop

GPU IMPLEMENTATIONS

• The use of vector split fluxes for explicit Finite Volume Method (FVM)
computation allows very high degrees of performance (single precision)

*Results shown for –O3 optimization on a regular structured grid with a single core.
Computations performed on a GTX-Titan for a small test case.

Device Test 1
(sec)

Test 2
(sec)

Test 3
(sec)

Average
computation

time (sec)

Average
speed-up

(times)
CPU 75.41 75.41 75.38 75.4 1.0
GPU 0.26 0.26 0.26 0.26 290

簡報者
簡報註解
Single precision is possible due to 2nd order and structured grid implementation. Higher than 2nd order requires double precision.

Shock Bubble Simulation using 32 C1060 GPU Devices
(ParCFD 2010, SC10)

BACKGROUND

SHLL (GPU): 3 seconds

Fluent (CPU) : 38 minutes

Single GPU performance (GTX-590)

(SIDE NOTE)

• In case you were wondering – yes, you can go faster on the CPU through
explicit AVX-OpenMP parallelization using AVX Intrinsic functions.

• Explicitly applying multi-level parallel
computing can accelerate some
workloads by hundreds of times…

簡報者
簡報註解
A well written code using Instrinsic functions effectively uses 8P cores where P is the number of physical cores.

This is the focus of another talk – I’d need hours to introduce you all to this.

CURRENT MOTIVATION

• The motivation for this research is three-fold:

• Investigations into novel numerical schemes designed to take
advantage of the unique hardware architectures currently
available,

• Applications in education – both at graduate and undergraduate
levels,

• Pressure from local industry and academia for increased capacity
to predict and understand behavior of gas flows in complex
industrial processes.

CURRENT MOTIVATION

• Taiwan plays a key role in the development
and application of various Chemical Vapor
Deposition (CVD) technologies.

• We have several companies in Taiwan both:
1. Making extensive use of the CVD

process, and
2. Researching and Developing new CVD

process technologies.
• Currently PI of several NSC/MOST projects

related to parallel simulation of CVD.

0.2 ms

0.1 ms

0.3 ms

0.5 ms

1.0 ms

2.0 ms

3.0 ms

4.0 ms

0.1 ms

0.2 ms

0.3 ms

0.5 ms

1.0 ms

2.0 ms

3.0 ms

4.0 ms
RHS: PPCVD results from: C.W. Lim, M.R. Smith, M.C. Jermy,
J.-S. Wu, and S.P. Krumdieck, Computers and Fluids, 2012.

CURRENT MOTIVATION

• The MOCVD process is often used in the manufacture of high power LED
devices.

• There are two approaches often employed: a showerhead style reactor
(left), and a planetary (satellite) reactor (center, right).

MOTIVATION
• Today’s discussion will focus on the simulation of a planetary style

MOCVD reactor.
• In such an approach, gases of different composition flow through 2 (or 3)

separate inlets through a small, heated region.

Heated Region
(~1300K)

Actively Cooled
Region

(? K)

Actively Cooled Region (~300K)

𝜌𝜌1,𝑉𝑉1,𝑇𝑇1

𝜌𝜌2,𝑉𝑉2,𝑇𝑇2

𝜌𝜌3,𝑉𝑉3,𝑇𝑇3

𝑉𝑉1 ≠ 𝑉𝑉2 ≠ 𝑉𝑉3
𝜌𝜌1 ≠ 𝜌𝜌2 ≠ 𝜌𝜌3
𝑇𝑇1 ≠ 𝑇𝑇2 ≠ 𝑇𝑇3

𝑃𝑃1 ≈ 𝑃𝑃2 ≈ 𝑃𝑃3

MOTIVATION
• Samples of previous work

M. Dauelsberg et al., Modeling and experimental
verification of transport and deposition behavior during
MOVPE of Ga1-xInxP in the Planetary Reactor, Journal of
Crystal Growth, 208[1-4], pp:85-92, 2000.

C. Martin et al., Modelling of group-III
nitride MOVPE in the closed coupled
showerhead reactor and Planetary
Reactor, Journal of Crystal Growth, 303[1],
pp: 318-322, 2007.

CORE FEATURES

• There are several core features associated with this process:

• High temperatures across the relatively small cross section encourage chemical
reactions in the vicinity of the susceptor.

• The flows from each inflow consist of different densities, flow velocities and
temperatures.

• These features result in some challenges, as we shall see – especially
considering our previous approaches for high-speed GPU computing.

VECTOR SPLIT FVM COMPUTATION

• The challenge – all vector split flux formulations have an associated numerical
dissipation.

• We can (approximately and inappropriately) estimate the numerical dissipation
by rearranging the fluxes to be in Rusanov form:

 where alpha (in this case) is a characteristic speed associated with the system.
• Substitution of fluxes in this form into the original governing expression reveals a

dissipative term:

𝐹𝐹 = 1/2 𝐹𝐹𝐿𝐿 + 𝐹𝐹𝑅𝑅 − (∝/2)(𝑈𝑈𝑅𝑅 − 𝑈𝑈𝐿𝐿)

𝐹𝐹 = 1/2 𝐹𝐹𝐿𝐿 + 𝐹𝐹𝑅𝑅 − (∝/2)(𝑈𝑈𝑅𝑅 − 𝑈𝑈𝐿𝐿)

𝑈𝑈𝑖𝑖
𝑘𝑘+1 − 𝑈𝑈𝑖𝑖

𝑘𝑘

∆𝑡𝑡 +
𝐹𝐹
𝑖𝑖+12

𝑘𝑘 − 𝐹𝐹
𝑖𝑖−12

𝑘𝑘

∆𝑥𝑥 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 −

𝛼𝛼∆𝑥𝑥
2

𝜕𝜕2𝑈𝑈
𝜕𝜕𝑥𝑥2 = 0

Sub in Re-arrange

i.e. every split scheme is a n artificial diffusion scheme.

VECTOR SPLIT FVM COMPUTATION

• The complication is (perhaps) not so obvious:

• In the steady state, the equation can be rearranged:

• Consider the steady 1D problem (for the steady N-S equations):

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝐶𝐶

−
𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∆𝑥𝑥

2
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑥𝑥2 = 𝑆𝑆 This term is never 0 – only

approaches it as dx goes to 0.
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝐶𝐶

= 𝑆𝑆 +
𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∆𝑥𝑥

2
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑥𝑥2

THIGH TLOW

x=L
x=0 x=L

X=0

Velocity

(ρ- ρLOW)/(ρHIGH- ρLOW) (T- TLOW)/(THIGH- TLOW)

Density Temperature

0

1

VECTOR SPLIT FVM COMPUTATION

• The presence of this additional dissipative term results in a (albeit) small, non
zero and non-physical velocity field.

• Unfortunately, it cannot be neglected for low speed flows.

x=L X=0

Velocity

(ρ- ρLOW)/(ρHIGH- ρLOW) (T- TLOW)/(THIGH- TLOW)

Density Temperature

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

2

2.5

3

3.5

4

4.5

5 x 10-3

x/L

U
/s

qr
t(R

T)

60 cells
40 cells

簡報者
簡報註解
This solution should seem familiar to those from the plasma background. The results look much like the potential field in a 1D sim – because the equations are similar.
The results and diffusion coefficient for EFM (KFVS) are shown. Strong function of mach number.

VECTOR SPLIT FVM COMPUTATION

• This means than none of our previous GPU work is capable of performing this
simulation.

• We require a flux solver which can appropriately compute fluxes in the
absence of a pressure field without resulting in a non-physical result.

• The obvious solution – a flux difference splitting approach might have a
better chance at doing this.

• To be more specific (about my choice) – we can use the analytical solution
to the Riemann problem.

FLUX SOLVER

• The solver used is a so-called
“approximate” Riemann
solver developed by Peter
Jacobs (University of
Queensland).

• The solver has similarities to
Osher’s approximate
Riemann solver.

P. A. Jacobs, Approximate Riemann Solver for Hypervelocity Flows,
A.I.A.A. Journal Vol. 30(10):2558—2561, 1992.

S. Osher and F. Solomon, Upwind Difference Schemes for Hyperbolic
Systems of Conservation Laws, Mathematics of Computation,
38(158):339-374, 1982.

4 Newton Iterations for P*, U*

FLUX SOLVER
• The solver was originally design for high

speed (hypersonic) flows, however – it has
favorable characteristics.
(i.e. Error 2 orders of magnitudes smaller)

• Horrible for GPU computing (thread
divergence)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5 x 10-5

x/L

U
/s

qr
t(R

T)

Start

Compute Riemann Invariants

Vacuum?

Estimate P*, U* Set Min. Values

Shock type

2 shocks - Strong Shock
Relations Left Moving Shock Right Moving Shock

• Calculate other properties in * region
• Compute Interface Fluxes

簡報者
簡報註解
Note that the artificial velocity produced by Riemann is 100 times smaller.

For unstructured grids, we also need coordinate transformations.

GPU IMPLEMENTATIONS

• The parallelism paradigm changes
when computing fluxes across
interfaces in the conventional
fashion.

• Fluxes are computed in parallel over
interfaces.

• Gradients of primitives (for higher
order reconstruction) and state
updates are parallel over cells.

• Asynchronous transfers between the
host and GPU are used to hide the
communication cost.

Initialization

Calculate Interface
Fluxes (Faces)

State Update
Computations (Cell)

Rendering
Operations

GPU Flux Calc

GPU State Calc

GPU (s)

ADAPTIVE UNSTRUCTURED GRIDS
• Unfortunately, real-life industrial work is often strongly multi-scale and requires

the use of adaptive, unstructured computational grids.
• In addition, we employ AMR to assist our computations.

簡報者
簡報註解
Note the scale of the MOCVD reactor – approximately 800mm across with flow channels 1-2mm in diameter.

ADAPTIVE UNSTRUCTURED GRIDS

• Meshing can be performed either by (i) external
software using tetrahedral (or otherwise) grids (right)
or on the GPU using Cartesian cells (left).

• Cell splitting depends on the cell  rectangular cells
are split 8 ways, for example. R. Biswas and R. Strawn, Applied Numerical Mathematics, 26(1-2):135-

151, 1998.

簡報者
簡報註解
Unstructured cell splitting based on algorithm provided by Rupak (Director of computing at NASA).

GPU IMPLEMENTATIONS
• To accelerate the

code, both GPU
shared memory and
texture memory is
used.

• Since our approach
is unstructured, we
absolutely need
double precision.

• CUDA can be
“tricked” into using
double precision
textures using int2.

n

p
q

9 quantities to be stored – x,y,z for each normal.

簡報者
簡報註解
This function is provided by Nvidia researchers. Credit where it’s due.

Note the use of the GPU instrinsic function.

• Coalesced memory access is guaranteed by storing desired quantities
together in memory.

• All variables (primitives, conserved quantities, fluxes) are stored in this way.

GPU IMPLEMENTATIONS

nx ny nz px py pz qx qy qz nx ny nz px py pz qx qy px py pz qx qy qz

Cell i Cell j Cell k

• In addition, each kernel
is assigned a number of
threads per block based
on the number of
registers required for
each.

Fluxes are face parallelized.

States are cell parallelized.

簡報者
簡報註解
Also note that fluxes are computed per face – and hence are face parallelized.
The state calculations are simpler than fluxes – computationally – and require fewer registers. Hence, we use more threads per block.

HIGHER ORDER EXTENSION
• The method for higher order extension depends on the mesh type.
• TVD-MUSCL is employed for Cartesian style grids (MINMOD here)
• It’s important to know that the extension hasn’t backfired on us.

C.W. Schulz-Rinne, J.P. Collins and H.M. Glaz, Numerical Solution of the Riemann problem for two-dimensional Gas
Dynamics, SIAM J. Sci. Comput., 14, pp. 1394-1414, 1993.
S. Serna, A Class of Extended Limiters Applied to Piecewise Hyperbolic Methods, SIAM J. Sci. Comput, 28[1], pp. 123-
140, 2006.

簡報者
簡報註解
It may be difficult to see in the colour contours produced by Ensight, but the 2nd order results do offer improvement on the 1st order results.

EXAMPLE - MOCVD SIMULATION

• The unstructured, adaptive (AMR) solver is applied to MOCVD simulation.
• Governing equations: N-S equations (5) for gas flow, plus transport equations

for an additional 7 gas species.
• Species transport includes:

• Advection (with bulk gas)
• Diffusion

• Mass (Concentration) Diffusion (Due to presence of density gradients)
• Thermal Diffusion (Due to presence of temperature gradients)

• Diffusion terms treated using higher order central differencing.
• Topic of current NSC/MOST project (GPU and AVX optimization of MOCVD)

MOCVD SIMULATION
• We approximate

the deposition
properties of the
reactor by
computing the
formation of heavy
particles.

• This is a simpler (3
reaction channel)
model than usually
required.

D. Moscatelli and C. Cavallotti, Theoretical
Investigation of the Gas-Phase Kinetics Active
during the GaN MOVPE, J. Phys. Chem. A, 111,
pp. 4620-4631, 2007.

Heavy Particle Formation Chain Reaction

MOCVD SIMULATION

• Most real (modern) MOCVD reactors are protected by patents and NDA’s.
• However, I can show you results from this reactor.

𝑇𝑇(𝑥𝑥) =

300 x < 100

300 +
1000 𝑥𝑥 − 100

140 − 100 100 ≤ x <140
1300 140 ≤ x <310

 1300 −
1000 𝑥𝑥 − 310

360 − 310 310 ≤ x <360

J. Skibinski et al., Modeling of heat and mass transfer in GaN MOVPE reactor,
17th International Conference on Crystal Growth and Epitaxy ICCGE-17, 2013.

200 RPM

簡報者
簡報註解
The spinning, heated susceptor guarantees the need for a 3D simulation.

MOCVD SIMULATION
• The flow rates were adapted from a circular reactor based on matching

flowrates through the cross sectional area of the injectors.
• A simple surface adsorption model for Ga(NH2)3 was implemented.
• Non-slip surfaces used on all walls.

J. Skibinski et al., Modeling of heat and mass transfer in GaN MOVPE reactor,
17th International Conference on Crystal Growth and Epitaxy ICCGE-17, 2013.

Inflow NH3 N2 H2 TMGa Temp
Top 3 0 5 0 300K
Bottom 0 0.5 5 0.02 300K

Flow Rates (SLPM) and Temperatures

MOCVD SIMULATION

• Number of cells: ~ 2-13 million cells.
• First order results match those from

commercial packages (COMSOL)
• The formation of Ga(NH2)3 is in the

correct, expected location.
• There is little upstream diffusion of

NH3 into the lower inflow.
• These results were far too

convenient:
• Circulation, vortex shedding?
• Temperature-diffusion induced

instabilities…

Temperature Distribution

H2 (Mass fraction) Distribution

NH3 (Mass fraction) Distribution

Ga(NH2)3 (Mass fraction) Distribution

簡報者
簡報註解
While these results matched commercial software, they were far too convenient. None of the expected flow instabilities were present.

MOCVD SIMULATION

The use of higher order (2nd order, 3rd order) paints a very different picture of the flow situation.
(2.3 million cells, 3 levels of AMR refinement)

MOCVD SIMULATION
• Expected Re within the reactor were not high

enough (perhaps) to explain some of the
phenomena we saw.

• We found that some previous DNS simulations
of similar problems provided some insight.

• Strong temperature gradients in directions
normal to the flow direction result in
instabilities.

H Kawamura et al., International Journal of Heat and Fluid Flow, 20(3):196-207, 1999.

Re = 395

Re = 180 Re = 395, Pr = 0.71

Re = 395, Pr = 0.025

MOCVD SIMULATION

• Several flow stabilities
(related to both
velocity gradients
and density
gradients) result in
the formation of
several 3D vortices.

• This problem has no
time-steady solution –
hence, the use of a
steady solution
(which averages
these fluctuations) is
a poor idea.

簡報者
簡報註解
The flow moves to the upper region of the flow due to the rotating susceptor.

MOCVD SIMULATION

• Higher order
implementation predicts
several flow features:

• Upstream diffusion of NH3,
• Vortex shedding (inflow

speeds are not
matched!)

• Complex flow structures
resulting from strong
temperature gradient in
flow field.

MOCVD SIMULATION

• These vortices actually
encourage mixing of the
unreacted TMGa.

• This actually results in a
larger amount of
produced Ga(NH2)3.

• This also results in incidental
deposition on the upper
surface of the reactor.

• These features agree with
experiments performed by
collaborators.

MOCVD SIMULATION

• These vortices actually
encourage mixing of the
unreacted TMGa.

• This actually results in a
larger amount of
produced Ga(NH2)3.

• This also results in incidental
deposition on the upper
surface of the reactor.

• These features agree with
experiments.

簡報者
簡報註解
Due to the forced cooling on the upper and side surfaces, less Ga(NH2)3 is produced near the cool edges of the simulation region.

MOCVD SIMULATION

• The profiles produced
by the simulations were
(more or less) in line with
what we saw in
experiments.

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

3.50E-06

4.00E-06

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52

Profile of Absorbed Ga(NH2)3 on susceptor

Wafer Inlet

(GaNH2)3 absorbed by surface over 25k timesteps.

簡報者
簡報註解
What is amazing is that we used the THEORETICAL reaction rates – not experimental – and still managed to place the deposition profile correctly.

FLOW SIMULATION

• The solver is also being provided to Kymco as part of a long-term research
project.

FLOW SIMULATION

• The project is centered around a complete
package for use by Kymco engineers as part
of their design process.

Mesh Generation (GMSH)

Boundary and Flow
Condition (NCKU) Parallel Flow Solver (NKCU)

FLOW SIMULATION

Parallel Flow Solver (NKCU) The project (commenced March 2014) has already reproduced
existing simulation and experimental results.

FLOW SIMULATION

• The solver is parallelized using several paradigms:
• OpenMP / MPI hybrid (conventional model)
• Multiple-GPU parallelization
• Multiple Intel Phi parallelization

• Two clusters are being constructed (in 2015 and

2016) at Kymco HQ and NCKU to power this solver.

• Preliminary results demonstrate approximately 60
times speed over the single CPU version of the code.

2016

2015

PARALLEL PERFORMANCE
(UNSTRUCTURED, SINGLE GPU)

Performance on various single GPU devices (double precision)
(Small test: 1.7 Million cells, 3 AMR levels, 25,000 steps, refresh each 1000 steps)

Device Time Speedup
Intel Xeon E5-2670
(1 core, SSE, -O3)

~ 57 hours 1x

Nvidia GTX-Titan
(64/64/128) TPB

64 mins ~53x

Nvidia GTX-Titan
(32/32/64) TPB

78 mins ~43x

The primary reasons for the slow performance were (i) nesting within the
OpenGL rendering loop, and (ii) rendering-related computations.

PARALLEL PERFORMANCE
• We also see a significant performance drop as

a result of the change from structured to
unstructured.

• Two reasons for this:
• This is due to load unbalancing between

blocks (10-20%)
• Poorly structured memory access (80-90%)

• Re-ordering of cells plays some role in
improving the performance.

• After removal of the graphical interface –
utilization = 95.7%.

• Flux computations: 69.3%, 86
registers/thread.

• State update: 30.7%

簡報者
簡報註解
Care must be taken to ensure we don’t split too many cells near coarse cells. Gradual coarsening / refining should be used.

PARALLEL PERFORMANCE
• For 2nd order accuracy – comparison against

previous multi-GPU code:

• The fluxes for the approximate Riemann solver
are much more complex.

• Our state function also does less work.
• Gradient computation on the unstructured grid

is also more intensive.
• We are now either (i) throughput bound, or (ii)

stuck due to thread divergence.

Solver Fluxes (%) State (%) Gradient (%)

QDS (Structured) ~12% ~68% ~13%

Jacob’s Riemann
Solver
(Unstructured)

~57% ~28% ~14%

Breakdown of computational expense
in previous QDS multi-GPU code using
32 GPU’s on a 8 million cell problem.

簡報者
簡報註解
Previously, we combined split fluxes in the state function – hence, it did more work. Now, the state function need only access fluxes.

The gradient computation is proportionally more expensive in unstructured due to MLS implementation.

Our code is either (i) throughput limited, or (ii) the performance of flux function is our bottleneck due to thread divergence.

CONCLUSIONS

• A conventional approximate Riemann solver has been employed in the
simulation of (i) a 3D MOCVD reactor, and (ii) Kymco engine assembly.

• The large amount of thread divergence in the Riemann solver makes it non-
ideal for application on the GPU  Approximately 3x-4x slower than a split
flux solver. Half of this is because of double precision.

• Integration into an interactive real-time computation tool using OpenGL
means we can see the flow field evolving – at a cost.

• Simulations of the simple 2-flow MOCVD injector revealed some unexpected
flow features – which result in deposition profiles better explaining some of
the experimental observations.

• Multiple-GPU performance scales well* (80% efficiency using 10 GPU
devices) – but will not be discussed here.

簡報者
簡報註解
* It’s worth noting that the implicit implementation of the code – using BiCG – does not scale well with multiple GPU’s. Only the explicit version scales.

QUESTIONS?

• Email me:

 Matthew Smith (李汶樺) msmith@mail.ncku.edu.tw

mailto:msmith@mail.ncku.edu.tw

	GPU Parallelization of a Three-dimensional Riemann Solver using Unstructured Tetrahedral Grids
	BACKGROUND
	BACKGROUND
	BACKGROUND
	BACKGROUND
	BACKGROUND
	BACKGROUND
	BACKGROUND
	GPU Architecture
	VECTOR SPLIT FVM COMPUTATION
	VECTOR SPLIT FVM COMPUTATION
	VECTOR SPLIT FVM COMPUTATION
	GPU IMPLEMENTATIONS
	GPU IMPLEMENTATIONS
	GPU IMPLEMENTATIONS
	BACKGROUND
	(Side Note)
	CURRENT MOTIVATION
	CURRENT MOTIVATION
	CURRENT MOTIVATION
	MOTIVATION
	MOTIVATION
	CORE FEATURES
	VECTOR SPLIT FVM COMPUTATION
	VECTOR SPLIT FVM COMPUTATION
	VECTOR SPLIT FVM COMPUTATION
	VECTOR SPLIT FVM COMPUTATION
	Flux Solver
	Flux Solver
	GPU IMPLEMENTATIONS
	Adaptive Unstructured Grids
	Adaptive Unstructured Grids
	GPU IMPLEMENTATIONS
	GPU IMPLEMENTATIONS
	Higher order extension
	EXAMPLE - MOCVD Simulation
	MOCVD Simulation
	MOCVD Simulation
	MOCVD Simulation
	MOCVD Simulation
	MOCVD Simulation
	MOCVD Simulation
	MOCVD Simulation
	MOCVD Simulation
	MOCVD Simulation
	MOCVD Simulation
	MOCVD Simulation
	FLOW SIMULATION
	FLOW SIMULATION
	FLOW SIMULATION
	FLOW SIMULATION
	Parallel Performance (UNSTRUCTURED, single GPU)
	PARALLEL PERFORMANCE
	PARALLEL PERFORMANCE
	CONCLUSIONS
	Questions?

