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BACKGROUND 

• Why use parallel computing? 
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BACKGROUND 

• Why use parallel computing? 

Response 2: Because you have to try hard to find a system which is not capable of parallel computing. 

Coprocessors 
CPU’s 

簡報者
簡報註解
Fact: Currently (in Taiwan), it is impossible to purchase a CPU from a regular vendor which is not multi-core.




BACKGROUND 

• Why use parallel computing? 

Response 3: Because it’s easier than its ever been before.         Mostly.            Well…. 

OpenACC CUDA OpenMP / Posix OpenMPI / MPI 

簡報者
簡報註解
Fact: Currently (in Taiwan), it is impossible to purchase a CPU from a regular vendor which is not multi-core.




BACKGROUND 

• Why use parallel computing? 

Response 4: Because it’s more affordable than ever before. 

AMD A10-6800K 
$4400 NTD 

GTX-650 Ti 
$4000 NTD 

Intel i3  
$4900 NTD 

HD-7970 
$8000 NTD 

簡報者
簡報註解
Fact: Currently (in Taiwan), it is impossible to purchase a CPU from a regular vendor which is not multi-core.




BACKGROUND 
AMD Athlon II X6 

FAKE 
MONA 
LISA 

GTX-TITAN 

Seventeam PSU 

• There is no longer an 
excuse for not having 
a parallel capable 
computer. 
 

• It’s very possible to 
own a computer 
capable of 1 TFlop for 
less than $800 USD. 
 

 

GTX-460 

簡報者
簡報註解
PS: This computer cost more than 800 USD.

Can anyone here guess which item was the 2nd most expensive?




BACKGROUND 

• The pursuit of high performance computing continues in Taiwan. 
 

• Current methodologies (in my lab) have focused on the use of: 
• Conventional (distributed) parallel computing 

• MPI-based distributed computing, 
• Hybrid shared-distributed parallel paradigms, 

• The Intel Phi device, 
• The Kepler (K20, Titan) and Fermi (M2070, C2075) Tesla Computing GPU’s. 

 
• Today’s talk will focus on the GPU. Mostly. 



BACKGROUND 
• This research is supported by the presence of two 

supercomputing clusters: 
 

• Formosa 5 @ NCHC: < 80 nodes, each with dual Xeon 
CPU’s and 3x Tesla (Fermi) M2070. Infiniband interconnect 
(40GB) 
 

• A small phi cluster containing several Intel Phi devices 
over multiple computing nodes. (Also located @ NCHC) 
 

• This is in addition to multiple test platforms located within 
NCKU’s High Performance Heterogeneous Computing 
Laboratory (all of Nvidia, AMD, Intel Coprocessors and 
Accelerators). 
 
 

 

 Formosa 5 



GPU ARCHITECTURE 

• The modern GPU contains 
a large number of 
independent streaming 
cores, stored separately in 
multiple SMX’s (SMP’s). 

• Each core is capable of 
performing relatively 
simple operations – unlike 
modern CPU cores. 

• Communication is possible 
using shared and global 
memory – but should be 
discouraged. 
 
 
 

簡報者
簡報註解
The modern AVX-capable CPU is extremely powerful – capable of performing parallel SIMD operations on 8 floats simultaneously. This, together with massive amounts of cache, mean a single CPU core is not the same as a CUDA core.



VECTOR SPLIT FVM COMPUTATION 

• Our previous strategy for obtaining high degrees of performance on the GPU 
device was through the use of Vector Split Finite Volume fluxes, where the 
flux between cells i and i+1 can be written in the general form: 
 
 

• We’ve developed several low dissipation versions of such schemes: 
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For example…. 

簡報者
簡報註解
CUDA cores – being separate – are well applied using vector split FVM due to the locality.
We’ve developed many split solvers to meet this end.



VECTOR SPLIT FVM COMPUTATION 

Čada. M., M. Torrilhon., “Compact third-order limiter functions for finite volume methods,” J. Compt. Phys., 
Vol.228, pp. 4118–4145, 2009. 
 

Koren 
Limiter 
(3rd order) 
1000x1000  

MINMOD 
Limiter 
(2nd order) 
960x960  

Roe (FDS) 
Fluxes 
 
Double 
Precision 

SHLL (FVS) 
Fluxes 
 
Single 
Precision 

簡報者
簡報註解
My result on the right. Vector Split fluxes are still capable of high resolution simulation. But they are still problematic.
Euler 4 contact problem – supposed to be difficult for a vector split approach to manage due to failure to resolve contact surface.




VECTOR SPLIT FVM COMPUTATION 

Čada. M., M. Torrilhon., “Compact third-order limiter functions for finite volume methods,” J. Compt. Phys., 
Vol.228, pp. 4118–4145, 2009. 
 

Koren 
Limiter 
(3rd order) 
1000x1000  

MINMOD 
Limiter 
(2nd order) 
960x960  

Roe (FDS) 
Fluxes 
 
Double 
Precision 

SHLL (FVS) 
Fluxes 
 
Single 
Precision 

簡報者
簡報註解
Euler 4 shock problem.




GPU IMPLEMENTATIONS 

• The development of the MOCVD solver platform 
continued from the interactive real-time computation 
platform using Augmented Reality. 
 
 

Demonstrations at SC11, ISC12, GTC’13. Demonstrations at NTHU 

簡報者
簡報註解
This makes real-time applications possible.



GPU IMPLEMENTATIONS 
• Real-time computation and 

visualization on the GPU is simple 
using OpenGL.  
 

• This tool allows the engineers to see 
the flow field evolve in real-time, 
adjust boundary conditions in real-
time or change operating 
conditions. 
 

• Hence, the key to the approach is 
the focus on the main (OpenGL) 
rendering loop. 
 
 

Initialization 

Split Flux 
Computations (Cell) 

State Update 
Computations 

Rendering 
Operations 

GPU Flux Calc 

GPU State Calc 

GPU (s) 
Rend

ering Loop 



GPU IMPLEMENTATIONS 

• The use of vector split fluxes for explicit Finite Volume Method (FVM) 
computation allows very high degrees of performance (single precision) 
 
 
 
 
 

*Results shown for –O3 optimization on a regular structured grid with a single core. 
Computations performed on a GTX-Titan for a small test case. 
 

Device Test 1 
(sec) 

Test 2 
(sec) 

Test 3 
(sec) 

Average 
computation 

time (sec) 

Average 
speed-up 

(times) 
CPU 75.41 75.41 75.38 75.4 1.0 
GPU 0.26 0.26 0.26 0.26 290 

簡報者
簡報註解
Single precision is possible due to 2nd order and structured grid implementation. Higher than 2nd order requires double precision.



Shock Bubble Simulation using 32 C1060 GPU Devices 
(ParCFD 2010, SC10) 

BACKGROUND 

SHLL (GPU): 3 seconds 

Fluent (CPU) : 38 minutes 

Single GPU performance (GTX-590) 



(SIDE NOTE) 

• In case you were wondering – yes, you can go faster on the CPU through 
explicit AVX-OpenMP parallelization using AVX Intrinsic functions. 
 
 
 
 

• Explicitly applying multi-level parallel 
computing can accelerate some 
workloads by hundreds of times… 
 
 
 

簡報者
簡報註解
A well written code using Instrinsic functions effectively uses 8P cores where P is the number of physical cores.

This is the focus of another talk – I’d need hours to introduce you all to this.



CURRENT MOTIVATION 

• The motivation for this research is three-fold: 
 

• Investigations into novel numerical schemes designed to take 
advantage of the unique hardware architectures currently 
available, 

• Applications in education – both at graduate and undergraduate 
levels, 

• Pressure from local industry and academia for increased capacity 
to predict and understand behavior of gas flows in complex 
industrial processes. 

 
 

 



CURRENT MOTIVATION 

• Taiwan plays a key role in the development 
and application of various Chemical Vapor 
Deposition (CVD) technologies. 

• We have several companies in Taiwan both:  
1. Making extensive use of the CVD 

process, and 
2. Researching and Developing new CVD 

process technologies. 
• Currently PI of several NSC/MOST projects 

related to parallel simulation of CVD. 
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RHS: PPCVD results from: C.W. Lim, M.R. Smith, M.C. Jermy, 
J.-S. Wu, and S.P. Krumdieck, Computers and Fluids, 2012. 



CURRENT MOTIVATION 

• The MOCVD process is often used in the manufacture of high power LED 
devices. 

• There are two approaches often employed: a showerhead style reactor 
(left), and a planetary (satellite) reactor (center, right). 
 
 

 



MOTIVATION 
• Today’s discussion will focus on the simulation of a planetary style 

MOCVD reactor. 
• In such an approach, gases of different composition flow through 2 (or 3) 

separate inlets through a small, heated region. 
 
 

 

Heated Region  
(~1300K) 

Actively Cooled 
Region  

(? K) 

Actively Cooled Region (~300K) 

𝜌𝜌1,𝑉𝑉1,𝑇𝑇1 

𝜌𝜌2,𝑉𝑉2,𝑇𝑇2 

𝜌𝜌3,𝑉𝑉3,𝑇𝑇3 

𝑉𝑉1 ≠ 𝑉𝑉2 ≠ 𝑉𝑉3 
𝜌𝜌1 ≠ 𝜌𝜌2 ≠ 𝜌𝜌3 
𝑇𝑇1 ≠ 𝑇𝑇2 ≠ 𝑇𝑇3 

𝑃𝑃1 ≈ 𝑃𝑃2 ≈ 𝑃𝑃3 



MOTIVATION 
• Samples of previous work 

 
 

 

M. Dauelsberg et al., Modeling and experimental 
verification of transport and deposition behavior during 
MOVPE of Ga1-xInxP in the Planetary Reactor, Journal of 
Crystal Growth, 208[1-4], pp:85-92, 2000. 

C. Martin et al., Modelling of group-III 
nitride MOVPE in the closed coupled 
showerhead reactor and Planetary 
Reactor, Journal of Crystal Growth, 303[1], 
pp: 318-322, 2007. 



CORE FEATURES 

• There are several core features associated with this process: 
 

• High temperatures across the relatively small cross section encourage chemical 
reactions in the vicinity of the susceptor. 
 

• The flows from each inflow consist of different densities, flow velocities and 
temperatures. 
 

• These features result in some challenges, as we shall see – especially 
considering our previous approaches for high-speed GPU computing. 
 
 

 



VECTOR SPLIT FVM COMPUTATION 

• The challenge – all vector split flux formulations have an associated numerical 
dissipation. 

• We can (approximately and inappropriately) estimate the numerical dissipation 
by rearranging the fluxes to be in Rusanov form: 
 

   where alpha (in this case) is a characteristic speed associated with the system. 
• Substitution of fluxes in this form into the original governing expression reveals a 

dissipative term: 

𝐹𝐹 = 1/2 𝐹𝐹𝐿𝐿 + 𝐹𝐹𝑅𝑅 − (∝/2)(𝑈𝑈𝑅𝑅 − 𝑈𝑈𝐿𝐿) 

𝐹𝐹 = 1/2 𝐹𝐹𝐿𝐿 + 𝐹𝐹𝑅𝑅 − (∝/2)(𝑈𝑈𝑅𝑅 − 𝑈𝑈𝐿𝐿) 

𝑈𝑈𝑖𝑖
𝑘𝑘+1 − 𝑈𝑈𝑖𝑖

𝑘𝑘

∆𝑡𝑡 +
𝐹𝐹
𝑖𝑖+12

𝑘𝑘 − 𝐹𝐹
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∆𝑥𝑥   = 0 

𝜕𝜕𝜕𝜕
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2

𝜕𝜕2𝑈𝑈
𝜕𝜕𝑥𝑥2 = 0 

Sub in Re-arrange 

i.e. every split scheme is a n artificial diffusion scheme. 



VECTOR SPLIT FVM COMPUTATION 

• The complication is (perhaps) not so obvious: 
 
 

• In the steady state, the equation can be rearranged: 
 

• Consider the steady 1D problem (for the steady N-S equations): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝐶𝐶

−
𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∆𝑥𝑥

2
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑥𝑥2 = 𝑆𝑆 This term is never 0 – only 

approaches it as dx goes to 0. 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝐶𝐶

= 𝑆𝑆 +
𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∆𝑥𝑥

2
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑥𝑥2  

THIGH TLOW 

x=L 
x=0 x=L 

X=0 

Velocity 

(ρ- ρLOW)/(ρHIGH- ρLOW) (T- TLOW)/(THIGH- TLOW) 

Density Temperature 

0 

1 



VECTOR SPLIT FVM COMPUTATION 

• The presence of this additional dissipative term results in a (albeit) small, non 
zero and non-physical velocity field. 
 
 
 
 
 
 
 

• Unfortunately, it cannot be neglected for low speed flows. 
 
 

x=L X=0 

Velocity 

(ρ- ρLOW)/(ρHIGH- ρLOW) (T- TLOW)/(THIGH- TLOW) 

Density Temperature 

0 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

2

2.5

3

3.5

4

4.5

5 x 10-3

x/L

U
/s

qr
t(R

T)

 

 

60 cells
40 cells

簡報者
簡報註解
This solution should seem familiar to those from the plasma background. The results look much like the potential field in a 1D sim – because the equations are similar. 
The results and diffusion coefficient for EFM (KFVS) are shown. Strong function of mach number.




VECTOR SPLIT FVM COMPUTATION 

• This means than none of our previous GPU work is capable of performing this 
simulation. 
 

• We require a flux solver which can appropriately compute fluxes in the 
absence of a pressure field without resulting in a non-physical result. 
 

• The obvious solution – a flux difference splitting approach might have a 
better chance at doing this. 
 

• To be more specific (about my choice) – we can use the analytical solution 
to the Riemann problem. 
 
 



FLUX SOLVER 

• The solver used is a so-called 
“approximate” Riemann 
solver developed by Peter 
Jacobs (University of 
Queensland). 
 

• The solver has similarities to 
Osher’s approximate 
Riemann solver. 
 
 
 
 

P. A. Jacobs, Approximate Riemann Solver for Hypervelocity Flows, 
A.I.A.A. Journal Vol. 30(10):2558—2561, 1992. 

S. Osher and F. Solomon, Upwind Difference Schemes for Hyperbolic 
Systems of Conservation Laws, Mathematics of Computation, 
38(158):339-374, 1982. 



4 Newton Iterations for P*, U* 

FLUX SOLVER 
• The solver was originally design for high 

speed (hypersonic) flows, however – it has 
favorable characteristics.  
(i.e. Error 2 orders of magnitudes smaller) 

• Horrible for GPU computing (thread 
divergence) 
 
 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5 x 10-5

x/L

U
/s

qr
t(R

T)

Start 

Compute Riemann Invariants 

Vacuum? 

Estimate P*, U* Set Min. Values 

Shock type 

2 shocks - Strong Shock 
Relations Left Moving Shock Right Moving Shock 

• Calculate other properties in * region 
• Compute Interface Fluxes 

簡報者
簡報註解
Note that the artificial velocity produced by Riemann is 100 times smaller.

For unstructured grids, we also need coordinate transformations.



GPU IMPLEMENTATIONS 

• The parallelism paradigm changes 
when computing fluxes across 
interfaces in the conventional 
fashion. 

• Fluxes are computed in parallel over 
interfaces.  

• Gradients of primitives (for higher 
order reconstruction) and state 
updates are parallel over cells. 

• Asynchronous transfers between the 
host and GPU are used to hide the 
communication cost. 
 
 
 
 

Initialization 

Calculate Interface 
Fluxes (Faces) 

State Update 
Computations (Cell) 

Rendering 
Operations 

GPU Flux Calc 

GPU State Calc 

GPU (s) 



ADAPTIVE UNSTRUCTURED GRIDS 
• Unfortunately, real-life industrial work is often strongly multi-scale and requires 

the use of adaptive, unstructured computational grids. 
• In addition, we employ AMR to assist our computations. 

簡報者
簡報註解
Note the scale of the MOCVD reactor – approximately 800mm across with flow channels 1-2mm in diameter. 



ADAPTIVE UNSTRUCTURED GRIDS 

• Meshing can be performed either by (i) external 
software using tetrahedral (or otherwise) grids (right) 
or on the GPU using Cartesian cells (left).   

• Cell splitting depends on the cell  rectangular cells 
are split 8 ways, for example. R. Biswas and R. Strawn, Applied Numerical Mathematics, 26(1-2):135-

151, 1998. 

簡報者
簡報註解
Unstructured cell splitting based on algorithm provided by Rupak (Director of computing at NASA).



GPU IMPLEMENTATIONS 
• To accelerate the 

code, both GPU 
shared memory and 
texture memory is 
used. 
 

• Since our approach 
is unstructured, we 
absolutely need 
double precision. 
 

• CUDA can be 
“tricked” into using 
double precision 
textures using int2. 
 
 
 
 

n 

p 
q 

9 quantities to be stored – x,y,z for each normal. 

簡報者
簡報註解
This function is provided by Nvidia researchers. Credit where it’s due.

Note the use of the GPU instrinsic function.



• Coalesced memory access is guaranteed by storing desired quantities 
together in memory. 
 
 
 

• All variables (primitives, conserved quantities, fluxes) are stored in this way. 
 

 
 
 
 

GPU IMPLEMENTATIONS 

nx ny nz px py pz qx qy qz nx ny nz px py pz qx qy     px py pz qx qy qz 

Cell i Cell j Cell k 

• In addition, each kernel 
is assigned a number of 
threads per block based 
on the number of 
registers required for 
each. 
 
 
 

Fluxes are face parallelized. 

States are cell parallelized. 

簡報者
簡報註解
Also note that fluxes are computed per face – and hence are face parallelized. 
The state calculations are simpler than fluxes – computationally – and require fewer registers. Hence, we use more threads per block.



HIGHER ORDER EXTENSION 
• The method for higher order extension depends on the mesh type. 
• TVD-MUSCL is employed for Cartesian style grids (MINMOD here) 
• It’s important to know that the extension hasn’t backfired on us. 

C.W. Schulz-Rinne, J.P. Collins and H.M. Glaz, Numerical Solution of the Riemann problem for two-dimensional Gas 
Dynamics, SIAM J. Sci. Comput., 14, pp. 1394-1414, 1993. 
S. Serna, A Class of Extended Limiters Applied to Piecewise Hyperbolic Methods, SIAM J. Sci. Comput, 28[1], pp. 123-
140, 2006. 

簡報者
簡報註解
It may be difficult to see in the colour contours produced by Ensight, but the 2nd order results do offer improvement on the 1st order results.



EXAMPLE - MOCVD SIMULATION 

• The unstructured, adaptive (AMR) solver is applied to MOCVD simulation. 
• Governing equations: N-S equations (5) for gas flow, plus transport equations 

for an additional 7 gas species. 
• Species transport includes: 

• Advection (with bulk gas) 
• Diffusion 

• Mass (Concentration) Diffusion (Due to presence of density gradients) 
• Thermal Diffusion (Due to presence of temperature gradients) 

• Diffusion terms treated using higher order central differencing. 
• Topic of current NSC/MOST project (GPU and AVX optimization of MOCVD) 



MOCVD SIMULATION 
• We approximate 

the deposition 
properties of the 
reactor by 
computing the 
formation of heavy 
particles. 

• This is a simpler (3 
reaction channel) 
model than usually 
required. 

D. Moscatelli and C. Cavallotti, Theoretical 
Investigation of the Gas-Phase Kinetics Active 
during the GaN MOVPE, J. Phys. Chem. A, 111, 
pp. 4620-4631, 2007. 

Heavy Particle Formation Chain Reaction  



MOCVD SIMULATION 

• Most real (modern) MOCVD reactors are protected by patents and NDA’s. 
• However, I can show you results from this reactor. 

𝑇𝑇(𝑥𝑥) =  
 

300                  x < 100

300 +
1000 𝑥𝑥 − 100

140 − 100      100 ≤ x  <140 
1300                             140 ≤ x  <310 

 1300 −
1000 𝑥𝑥 − 310

360 − 310    310 ≤ x  <360

  

J. Skibinski et al., Modeling of heat and mass transfer in GaN MOVPE reactor, 
17th International Conference on Crystal Growth and Epitaxy ICCGE-17, 2013.  

200 RPM 

簡報者
簡報註解
The spinning, heated susceptor guarantees the need for a 3D simulation.



MOCVD SIMULATION 
• The flow rates were adapted from a circular reactor based on matching 

flowrates through the cross sectional area of the injectors. 
• A simple surface adsorption model for Ga(NH2)3 was implemented. 
• Non-slip surfaces used on all walls. 

J. Skibinski et al., Modeling of heat and mass transfer in GaN MOVPE reactor, 
17th International Conference on Crystal Growth and Epitaxy ICCGE-17, 2013.  

Inflow NH3 N2 H2 TMGa Temp 
Top 3 0 5 0 300K 
Bottom 0 0.5 5 0.02 300K 

Flow Rates (SLPM) and Temperatures 



MOCVD SIMULATION 

• Number of cells: ~ 2-13 million cells. 
• First order results match those from 

commercial packages (COMSOL) 
• The formation of Ga(NH2)3 is in the 

correct, expected location. 
• There is little upstream diffusion of 

NH3 into the lower inflow. 
• These results were far too 

convenient: 
• Circulation, vortex shedding? 
• Temperature-diffusion induced 

instabilities… 
 
 

Temperature Distribution 

H2 (Mass fraction) Distribution 

NH3 (Mass fraction) Distribution 

Ga(NH2)3 (Mass fraction) Distribution 

簡報者
簡報註解
While these results matched commercial software, they were far too convenient. None of the expected flow instabilities were present. 



MOCVD SIMULATION 

The use of higher order (2nd order, 3rd order) paints a very different picture of the flow situation. 
(2.3 million cells, 3 levels of AMR refinement) 

 
 



MOCVD SIMULATION 
• Expected Re within the reactor were not high 

enough (perhaps) to explain some of the 
phenomena we saw. 

• We found that some previous DNS simulations 
of similar problems provided some insight. 

• Strong temperature gradients in directions 
normal to the flow direction result in 
instabilities. 
 
 

H Kawamura et al., International Journal of Heat and Fluid Flow, 20(3):196-207, 1999.  

Re = 395 

Re = 180 Re = 395, Pr = 0.71 

Re = 395, Pr = 0.025 



MOCVD SIMULATION 

• Several flow stabilities 
(related to both 
velocity gradients 
and density  
gradients) result in 
the formation of 
several 3D vortices. 

• This problem has no 
time-steady solution – 
hence, the use of a 
steady solution 
(which averages 
these fluctuations) is 
a poor idea. 
 
 

簡報者
簡報註解
The flow moves to the upper region of the flow due to the rotating susceptor.






MOCVD SIMULATION 

• Higher order 
implementation predicts 
several flow features: 
 

• Upstream diffusion of NH3, 
• Vortex shedding (inflow 

speeds are not 
matched!) 

• Complex flow structures 
resulting from strong 
temperature gradient in 
flow field. 

 
 



MOCVD SIMULATION 

• These vortices actually 
encourage mixing of the  
unreacted TMGa. 

• This actually results in a 
larger amount of 
produced Ga(NH2)3. 

• This also results in incidental 
deposition on the upper 
surface of the reactor. 

• These features agree with 
experiments performed by 
collaborators. 
 
 



MOCVD SIMULATION 

• These vortices actually 
encourage mixing of the  
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簡報者
簡報註解
Due to the forced cooling on the upper and side surfaces, less Ga(NH2)3 is produced near the cool edges of the simulation region. 



MOCVD SIMULATION 

• The profiles produced 
by the simulations were 
(more or less) in line with 
what we saw in 
experiments. 
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簡報者
簡報註解
What is amazing is that we used the THEORETICAL reaction rates – not experimental – and still managed to place the deposition profile correctly.



FLOW SIMULATION 

• The solver is also being provided to Kymco as part of a long-term research 
project.  



FLOW SIMULATION 

• The project is centered around a complete 
package for use by Kymco engineers as part 
of their design process. 

Mesh Generation (GMSH) 

Boundary and Flow 
Condition (NCKU) Parallel Flow Solver (NKCU) 



FLOW SIMULATION 

Parallel Flow Solver (NKCU) The project (commenced March 2014) has already reproduced 
existing simulation and experimental results. 



FLOW SIMULATION 

• The solver is parallelized using several paradigms: 
• OpenMP / MPI hybrid (conventional model) 
• Multiple-GPU parallelization 
• Multiple Intel Phi parallelization 

 
• Two clusters are being constructed (in 2015 and 

2016) at Kymco HQ and NCKU to power this solver. 
 

• Preliminary results demonstrate approximately 60 
times speed over the single CPU version of the code. 

2016 

2015 



PARALLEL PERFORMANCE 
(UNSTRUCTURED, SINGLE GPU) 

Performance on various single GPU devices (double precision) 
(Small test: 1.7 Million cells, 3 AMR levels, 25,000 steps, refresh each 1000 steps) 

Device Time Speedup 
Intel Xeon E5-2670 
(1 core, SSE, -O3) 

~ 57 hours 1x 

Nvidia GTX-Titan 
(64/64/128) TPB 

64 mins ~53x 

Nvidia GTX-Titan 
(32/32/64) TPB 

78 mins ~43x 

The primary reasons for the slow performance were (i) nesting within the 
OpenGL rendering loop, and (ii) rendering-related computations. 



PARALLEL PERFORMANCE 
• We also see a significant performance drop as 

a result of the change from structured to 
unstructured. 

• Two reasons for this: 
• This is due to load unbalancing between 

blocks (10-20%) 
• Poorly structured memory access (80-90%) 

• Re-ordering of cells plays some role in 
improving the performance. 

• After removal of the graphical interface – 
utilization = 95.7%. 

• Flux computations: 69.3%, 86 
registers/thread. 

• State update: 30.7% 
 

 
 

簡報者
簡報註解
Care must be taken to ensure we don’t split too many cells near coarse cells. Gradual coarsening / refining should be used.



PARALLEL PERFORMANCE 
• For 2nd order accuracy – comparison against 

previous multi-GPU code: 
 
 
 
 
 

• The fluxes for the approximate Riemann solver 
are much more complex. 

• Our state function also does less work. 
• Gradient computation on the unstructured grid 

is also more intensive. 
• We are now either (i) throughput bound, or (ii) 

stuck due to thread divergence. 
 

 

 
 

Solver Fluxes (%) State (%) Gradient (%) 

QDS (Structured) ~12% ~68% ~13% 

Jacob’s Riemann 
Solver 
(Unstructured) 

~57% ~28% ~14% 

Breakdown of computational expense 
in previous QDS multi-GPU code using 
32 GPU’s on a 8 million cell problem. 

簡報者
簡報註解
Previously, we combined split fluxes in the state function – hence, it did more work. Now, the state function need only access fluxes.

The gradient computation is proportionally more expensive in unstructured due to MLS implementation.

Our code is either (i) throughput limited, or (ii) the performance of flux function is our bottleneck due to thread divergence.



CONCLUSIONS 

• A conventional approximate Riemann solver has been employed in the 
simulation of (i) a 3D MOCVD reactor, and (ii) Kymco engine assembly. 

• The large amount of thread divergence in the Riemann solver makes it non-
ideal for application on the GPU  Approximately 3x-4x slower than a split 
flux solver. Half of this is because of double precision. 

• Integration into an interactive real-time computation tool using OpenGL 
means we can see the flow field evolving – at a cost. 

• Simulations of the simple 2-flow MOCVD injector revealed some unexpected 
flow features – which result in deposition profiles better explaining some of 
the experimental observations.   

• Multiple-GPU performance scales well* (80% efficiency using 10 GPU 
devices) – but will not be discussed here. 

簡報者
簡報註解
* It’s worth noting that the implicit implementation of the code – using BiCG – does not scale well with multiple GPU’s. Only the explicit version scales.



QUESTIONS? 

• Email me:  
 

 Matthew Smith (李汶樺)  msmith@mail.ncku.edu.tw 
  

mailto:msmith@mail.ncku.edu.tw
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